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Abstract 

This is the final report for the Hypervisors for Security and Robustness (Kernel 
Hypervisors) program. It contains a description of the kernel hypervisor approach 
that was developed on the program for selectively controlling COTS components to 
provide robustness and security. Using the concept of a loadable module, kernel 
hypervisors were implemented on a Linux kernel. These kernel hypervisors provide 
unbypassable security wrappers for application specific security requirements and 
can also be used to provide replication services. Kernel hypervisors have a number 
of potential applications, including protecting user systems from malicious active 
content downloaded via a Web browser and wrapping servers and firewall services 
for limiting possible compromises. 

This report also includes a summary of the results of the performance testing and 
composability analysis that was done on the program. It concludes with a discussion 
of lessons learned and open issues. 

Keywords: wrappers, security wrappers, kernel loadable modules, computer security, 
application security, browser security, Linux security, hypervisors 
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1. Overview 
This document is the final report for the Hypervisors for Security and Robustness 
program sponsored by DARPA's Information Technology Office. It describes the 
approach, called kernel hypervisors, developed on the program for selectively 
wrapping COTS components to provide robustness and security, and summarizes the 
major achievements of the program. 

1.1 Introduction 
A hypervisor is a layer of software, normally operating directly on a hardware 
platform, that implements the same instruction set as that hardware. They have 
traditionally been used to implement virtual machines[l]. Kernel hypervisors are a 
similar concept, but are implemented on top of an operating system kernel rather than 
on top of the hardware. These kernel hypervisors provide a set of "virtual" system 
calls for selected system components. 

Kernel hypervisors are loadable kernel modules that intercept system calls to perform 
pre-call and post-call processing. They can be used to provide an additional layer of 
fine-grained security control or to provide replication support. Their key features are 
that they can be set up to be unbypassable, since they are in the kernel, and they are 
easy to install, requiring no modification to the kernel or to the COTS applications 
that they are monitoring. 

Kernel hypervisors have a number of potential applications, including protecting user 
systems from malicious active content downloaded via a Web browser and wrapping 
servers and firewall services for limiting possible compromises. 

1.2 Accomplishments 
On this program, the following specific accomplishments were achieved. 

• A framework was developed based on a master kernel hypervisor, whose job is to 
coordinate installation and removal of individual client kernel hypervisors and to 
provide a means for management of these clients. The framework allows client 
kernel hypervisors to be stacked so that a variety of application specific policies 
can be implemented, each by means of its own kernel hypervisor. 

• A variety of specific client hypervisors (also called kernel loadable wrappers) 
were developed to test and demonstrate the feasibility of the kernel hypervisor 
concept Specific wrappers developed were: 

1. Netscape browser wrapper: to limit the damage that could be done when a 
user, browsing on the Internet, downloaded and executed malicious active 
content 

2. Apache web server wrapper: to protect the server's data files from 
unauthorized modification and to limit the damage that could be done if 



the server was taken over by a malicious user. 

3. Replication wrapper: to automatically replicate files as they are being 
modified in a manner transparent to the applications performing the 
modifications. 

The Netscape browser and Apache web server client hypervisors are actually 
generic wrappers that can be used to isolate an application and its data files in 
a separate domain so that the application is protected from other components 
of the system and vice versa. 

• A kernel hypervisor management component was developed that provides the 
ability to dynamically reconfigure the policies that the various client hypervisors 
enforce. 

• Performance testing was done to measure the impact of the various client 
hypervisors on the performance of their associated applications. 

• A composability analysis was performed to analyze the security implications of 
stacking client hypervisors. 

• A conference paper[2] describing the work was presented at the Annual Computer 
Security Applications Conference 97 (ACSAC97) and appears in the proceedings 
ofthat conference. 

• The source code for the kernel hypervisor components developed on this program 
has been made available on the web for other researchers. All code was 
developed for the Linux operating system. 

1.3 Document Organization 
The remainder of this document is organized as follows. 

• Section 2 describes the kernel hypervisor architecture, presents a high level view 
of the system components that were developed and discusses some of the possible 
uses of kernel hypervisors. 

• Section 3 presents a summary of the results of the performance testing. 

• Section 4 describes the composition analysis that was performed on the system. 

• Section 5 documents some of the lessons learned on the project and outlines 
possible future research directions. 

• The References section includes a list of cited and related documentation. 

• The Appendix contains the User Guide. 



2. Kernel Hypervisor Approach 
Section 2.1 presents an overview of the kernel hypervisor architecture that was 
developed on the program and includes a brief discussion of the benefits of the 
approach and how it relates to other research work. Section 2.2 then provides more 
details of the specific system components that were developed. More details of the 
implemented system can be found in the Design Report [3]. Section 2.3 documents 
some of the possible applications of the kernel hypervisor technology. 

2.1 Architecture Overview 
The kernel hypervisor architecture is illustrated in Figure 1. 

Figure 1. System Components 

User 

User Space 

Kernel 

• Master Kernel Hypervisor provides communications and control 
• Client Kernel Hypervisors provide application specific monitoring 
• Client Kernel Hypervisor Management provides the user interface for 

I configuration of client hypervisors 

There are three main components: 

• The master kernel hypervisor: manages the individual client kernel 
hypervisors that are currently loaded and provides a control facility allowing 
users to monitor and configure these client hypervisors. 

• Specific client kernel hypervisors: provide application specific policy 
decision making and enforcement. Each client kernel hypervisor can wrap 



one or many applications. User daemons that run in user space can also 
be developed to allow the client hypervisors to initiate actions in user 
space. 

• Client hypervisor management module: provides an interface for 
communicating with and configuring the client kernel hypervisors from user 
space. 

Kernel hypervisors are distinguished by the fact that they consist of loadable kernel 
code that is used to wrap specific applications. Other approaches have been used to 
provide wrappers for additional security or robustness including: 

• Traditional hypervisors that replace the standard hardware interface with an 
interface that provides additional capabilities. This approach was used by 
Bressoud and Schneider[l] for building a replication hypervisor that 
intercepts, buffers, and distributes signals from outside the system. 

• Special libraries that include security functionality and that are linked with 
an application before it is run. This is the approach taken by SOCKS [4] 
where the client links in the SOCKS client library. SOCKS is intended for 
use with client/server TCP/IP applications, but the concept of linking in 
special libraries can be used for any type of application. 

• Wrappers that make use of an operating system's debug functionality. This 
.    is the approach taken by the Berkeley group[5]. 

Our approach is most like the last, but it differs in that we place our code directly in the 
kernel and do not use the system debug functionality. Loadable kernel hypervisors have 
a number of benefits. 

• They are unbypassable. Since the wrapper is implemented within the 
operating system kernel, malicious code cannot avoid the wrapper by 
making direct calls to the operating system as could be done with code 
library wrappers. Any such calls will be intercepted and monitored. 

• They do not require kernel modifications. All kernel hypervisor code is 
implemented as modules that are loadable within the kernel while the 
system is running. There are no changes to kernel source code as is 
necessary with specialized secure operating systems. 

• They are flexible. Kernel hypervisors can be used both to implement a 
variety of different types of security policies and to provide replication 
functionality. Some of the possible applications are discussed below. A key 
feature is that kernel hypervisors can be "stacked", so that modular security 
policies can be developed and implemented as needed. 

• They are not platform specific. Kernel hypervisors can be used on any 
operating system that supports kernel loadable modules that have access to 
the system call data structure. This includes Linux, Solaris, and other 
modern Unix systems, as well as Windows NT. 

• They can be used to wrap COTS software without any modification to the 
software (including, e.g., relinking). Kernel hypervisors can monitor the 
actions of the COTS software and react in a manner that is transparent to the 
COTS application, other than it may be denied access to certain system 
resources according to the policy being enforced by the kernel hypervisor. 



The goal of kernel hypervisors is to protect against malicious code or to provide 
some type of additional functionality. Hence, the operating assumption is that the 
user can be trusted. This assumption implies that kernel hypervisors are similar to 
virus protection programs in that a user must not specifically disable them. In fact, 
kernel hypervisors can be set up so that they cannot be disabled, but they do rely on 
proper user administration and use. 

2.2 Components of the System 
Using the concept of a kernel loadable module, we implemented kernel hypervisors 
on a Linux kernel. Linux was chosen as the initial platform because it supports 
loadable modules, the source code is free and easily available so the results of our 
work will be accessible to other researchers and developers, and it is widely used as a 
Web server platform and hence provides a good target for our approach. 

As Figure 2 illustrates, Linux provides full support for kernel loadable modules[6]. 
Three system calls are supported that allow a privileged user to install and remove 
loadable modules and to list which modules are currently loaded. Once loaded, the 
kernel hypervisors in Linux run within kernel space and have full access to kernel 
data structures. 

Figure 2 Linux Loadable Modules 

Application 
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Loadable modules operate within kernel space and have access to all kernel data structures. 
Loadable modules can be loaded/unloaded without any modifications to the running system. 
Commands: 

lsmod - list modules currently loaded 
insmod moduleName - load the module named moduleName 
rmmod moduleName - unload the module named moduleName 

The remainder of this section discusses the three major components of our 
implemented kernel hypervisor system in more detail. 

• The Master Hypervisor Framework 
• The Client Kernel Hypervisors 
• The Kernel Hypervisor Management. 



2.2.1 The Master Hypervisor Framework 

A framework has been developed based on a master kernel hypervisor, whose job is 
to coordinate installation and removal of individual client kernel hypervisors and to 
provide a means for management of these clients. The framework allows client kernel 
hypervisors to be stacked so that a variety of application specific policies can be 
implemented, each by means of its own kernel hypervisor. The hypervisors run in the 
kernel, but since they are loadable modules, they do not require that the kernel be 
modified. 

Figure 3 illustrates the framework. The master hypervisor is loaded before any other 
client kernel hypervisors. A special application programming interface (API) has 
been defined that allows client hypervisors to register and unregister themselves with 
the master hypervisor and to identify which system calls they need to monitor. The 
master hypervisor keeps track of all currently registered client hypervisors and of the 
particular system calls that each client hypervisor is monitoring. When a client 
hypervisor module is removed via the rmmod call, it is the responsibility of the client 
hypervisor to de-register itself with the master hypervisor. 

Figure 3. Master Hypervisor Functions 
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A special device, /dev/hyper, has been defined for communication between user 
space and kernel hypervisors. The master hypervisor acts as the device driver for this 
device. The device allows a privileged user to dynamically update the configuration 
information for a kernel hypervisor, including updating the security policy that the 
hypervisor enforces. It also provides a mechanism that kernel hypervisors can use to 
communicate with user space daemons. Such daemons, for example, could be used to 
provide additional audit capabilities or replication services. 

The master hypervisor provides special wrapper code for use with any system call 
that is being monitored. The actual monitoring of system calls is performed by 
redirecting the links in the kernel system call table to point to system call wrappers 
that the master hypervisor provides. This redirection of links is the only modification 
to the kernel that is performed and is done by the master hypervisor only on system 
calls being monitored. The wrapper code is invoked when the system call is made 
and performs the processing illustrated in Figure 4. Each system call has its own 

Figure 4. System Call Processing 
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wrapper that follows the algorithm: 

• For each client kernel hypervisor monitoring this call, initiate that client's 
pre-call processing. 

• Call the standard system call processing. 
• For each client kernel hypervisor monitoring this call, initiate that client's 

post-call processing. 
Pre-call and post-call processing is used to enforce the client hypervisor's particular 
security policy or to initiate other actions by the client hypervisor. This processing 



could include additional auditing of system calls, including call parameters and 
results; performing access checks and making access decisions for controlled 
resources that the hypervisor is protecting; modifying system call parameters; and 
passing information to user daemons. 

2.2.2 Client Kernel Hypervisors 

Client kernel hypervisors are developed and loaded separately as needed. A single 
client kernel hypervisor can be designed to monitor just one specific application or a 
number of different applications. Client kernel hypervisors could also be used to 
enforce other types of policies independent of any application. 

To illustrate the practicality of the kernel hypervisor concept, we prototyped three 
client kernel hypervisors: one for wrapping the Netscape browser, one for replicating 
files, and one for wrapping the Apache Web Server. 

2.2.2.1 Netscape Hypervisor 

The     goal     of     the 
Netscape hypervisor is 
to     protect     a    user, 
browsing       on       the 
Internet, from 
downloading and 
executing       malicious 
active     content     that 
might     damage     the 
user's     system.     The 
Netscape      hypervisor 
accomplishes   this   by 
monitoring system calls 
made by the browser and enforcing a policy that only allows certain resources to be 
accessed. In particular, the set of files that the browser can open for read, and 
read/write access is controlled so that the browser effectively operates within its own 
limited execution context.  While this does not prevent malicious code from 
accessing, and possibly damaging, resources within this context, it does limit the 
damage that could be done to only these resources. 

In the case of the Netscape browser, the context includes the user's .netscape 
directory as well as limited access to other libraries needed by the browser to 
execute. Most files on the system, however, are not accessible to the browser and so 
cannot be damaged. To ensure that applications started from the browser as the result 
of a download, e.g. a postscript viewer, are also controlled, the hypervisor keeps 
track of all descendants of the browser and enforces the same policy on them as on 
the browser. 

The security policy that the Netscape hypervisor enforces is stated as a set of rules 
identifying which resources the browser is allowed to access and what permissions 
the browser has to the resource. If there is no rule that allows access to a resource, 



then the hypervisor refuses any requests for access to that resource. The format of the 
rules is: 

<type>        <idemifier>      <permissions> 

where <type> is either a file, socket, or process 

<identifier> is either a file/dir pathname, an IP address, or a process ID 

and   <permissions> depends on the type. 

For our Netscape prototype, only rules for the <file> type are used. For these rules 
permissions are: 

read, write, read/write, and none. 

Certain conventions are used to simplify the statement of the rules. If an <identifier> 
is a file directory, then access to all files in that directory and all subdirectories is 
governed by the rule for the <identifier>, unless this rule is specifically overridden. 
Rules can be overridden by stating another, more specific, rule. For example, if a rule 
allows read access to all files and subdirectories of the directory /etc, then you can 
prevent users from accessing the file /etc/passwd by including a rule for this file with 
a permission of none. 

2.2.2.2 Replication Hypervisor 
The replication hypervisor is used to transparently replicate a file or set of files. The 
objective is to provide a replication facility that allows immediate backup of changes 
to a file without having to modify any applications that are making the actual 
changes. 

The replication hypervisor monitors all system calls that modify files looking for 
calls that 
modify the set 
of files to be 
replicated. 
When  such   a 
call is 
identified,   the 
hypervisor 
caches        the 
input 
parameters and 
allows the call 
to continue 

execution. If execution of the call completes successfully, then the hypervisor sends 
the cached input parameters to a replication daemon, operating in user space, that 
replays the call with the cached parameters on the copy of the file that it is 
maintaining. 

Files can be replicated locally or across the network (using NFS) via this method. 
Results of our performance testing are documented in the Test Report, CDRL A006. 



2.2.2.3 Apache Server Hypervisor 
Based on our experience with the Netscape kernel hypervisor, a 
hypervisor was 
developed that can be 
used    to    isolate    any 
application        in        a 
compartment from 
which its access to files 
can     be     completely 
controlled. This generic 
security        hypervisor, 
plus additional 
restrictions 

generic secuntv 

using 
developed 
replication 

Apache 
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techniques 
for     the 
hypervisor, were used to develop a security hypervisor for the Apache Web Server. 

The web server requires two types of protection. First, the server must be restricted 
to a subset of the file system so that any attack coming through the server will be 
contained. This was accomplished by creating a new hypervisor, hyper_apache. 
Hyper_apache provides for the apache server application, httpd, what hyper_ns does 
for netscape. 

The server's temporary scratch directory and logging directories are configured as 
read/write while the html files presented by the server are configured as read only by 
hyper_apache. 

The second piece of server protection is to isolate the configuration and html files 
used by the server from modification by un-authorized individuals. This is 
accomplished by a new hypervisor, hyper_cop (for Circle of Protection). Once 
installed and configured, hyper_cop restricts access to the files within its circle from 
all but certain privileged users. This will prevent a rouge user from overriding the 

. system and changing the content of the web site even if they get access to root. The 
attacker will be required to know who the privileged user is before changes are 
allowed. 

This implementation of hyper_cop is sufficient to show proof of concept but some 
open issues remain. These are discussed more fully in Section 5. 

2.2.3 Kernel Hypervisor Management 
The kernel hypervisor management component allows a user to obtain information on 
client hypervisors that are currently loaded and to reconfigure them, if needed. (As 
noted earlier, hypervisors are loaded and removed through standard Linux system 
calls.) 

All hypervisor management is done via communication through the /dev/hyper 
device. The master hypervisor responds to requests for a list of all currently installed 
client hypervisors and their current identifiers. These identifiers are used to direct 
requests to specific kernel hypervisors. 

The management functions available for the Netscape hypervisor include: 
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• the ability to list the current rules that are being enforced 
• the ability to clear the current rule set and load a new one 
• the ability to change the log level that the hypervisor uses to determine what 

detail of logging it should do. 

2.3 Possible Applications 
Kernel hypervisors can be used in a variety of ways to enhance the security and 
robustness of a system. This section discusses some of the types of uses followed by 
some specific applications. 

2.3.1 Types of Uses 
Auditing: In their simplest form, kernel hypervisors can provide an audit and 
monitoring functionality that merely records additional information about the system 
resources that an application is accessing. Such audit hypervisors are also useful for 
determining what system resources an application accesses during its normal 
processing. Since the level of auditing can be dynamically adjusted and since kernel 
hypervisors also provide a control mechanism, they could be useful as a component 
of an intrusion/detection/response system. 

Fine-grained access control: The most compelling use of kernel hypervisors is to 
provide dynamic, fine-grained access control to various system resources such as 
files, network sockets and processes. The type of control possible is what 
differentiates this method of wrapping applications from standard access control list 
methods that perform control based on a user attribute. Kernel hypervisor security 
policies can be based on users, but can also be based directly on the application. For 
example, the Netscape kernel hypervisor that we implemented only monitored the 
Netscape application as well as any other applications started from within Netscape. 
Users had additional privileges to access their own .netscape directories, but could 
not override the restrictions in the Netscape hypervisor security database. These 
restrictions apply even to the root user. (In fact, an additional restriction imposed by 
the Netscape hypervisor was that the root user could not even run the Netscape 
browser.) 

Label-based access control: While the rule sets described in Section 2.2 can be 
used to implement most simple policies, it would also be possible to use kernel 
hypervisors to implement more sophisticated label-based policies, such as a 
multilevel secure (MLS) policy or a type enforcement policy. To be able to 
implement these policies, a kernel hypervisor would need a way to label system 
resources. This might be done by creating and maintaining its own list of labeled 
names, or by piggybacking the labels on system data structures that have available 
space. Because of the flexibility of the kernel hypervisor, these label-based policies 
could be applied to only those portions of the system that required labels. And 
policies could be quickly changed, if needed, to adapt to the current operating 
environment. 

Replication: Kernel hypervisors can also be used to provide replication features by 
duplicating system calls that modify system resources, such as files. We have 
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investigated one approach for doing this by using a user daemon to replay file access 
requests that are intercepted by a kernel hypervisor. The replayed requests effectively 
duplicate that portion of the file system that is being monitored. 

2.3.2 Specific Applications 
Specific applications that kernel hypervisors can be used for include: 

• Wrapping web browsers to protect the user from downloaded malicious 
active content. 
This is described in more detail in the section on the Netscape hypervisor. 
The most interesting point is that any applications that are started 
automatically from the browser, as well as any plug-ins, are also subject to 
the same restrictions that are on the browser. As noted earlier, this limits the 
damage that malicious active content can do to only those areas of the 
system that the user allows the browser to access. 

• Wrapping web servers to protect against malicious attacks. 
Kernel hypervisors can be used to ensure that if the web server is overrun 
the damage is limited. In particular, it can ensure that files being served by 
the web server are not modified inappropriately. Also, because they are 
often easy to overrun, CGI scripts are sometimes attacked by malicious 
users on the web. In particular, if a CGI script has the ability to connect to 
an internal system, then an attacker might be able to compromise this CGI 
script to launch an attack. By limiting which ports on an internal system a 
CGI script can connect to, a kernel hypervisor can limit the attacker to only 
services on those ports. 

• Wrapping services and proxies on an application gateway. 
Services, like Sendmail, often have unknown bugs that are only discovered 
when someone uses them to attack the system on which the service is 
running. Once again, kernel hypervisors provide a way of limiting the 
damage that such a compromise can cause. 

• Adding new security features to a system. 
Kernel hypervisors can be used to add security features, such as security 
levels, roles, or domains and types, to a system without requiring any 
additional modifications to the system. In fact, a special kernel security 
hypervisor could be implemented that performs all of the required security 
checks for any other kernel hypervisor. 

This is only a partial list of the possible security uses of kernel hypervisors. Any 
number of applications could benefit from the additional security that they can 
provide. 

2.4 Summary 
Kernel hypervisors are an approach to wrapping applications to provide additional 
security that has a number of advantages over other approaches. Because they reside 
in the kernel, they cannot be bypassed. Because they are implemented as loadable 
modules, they do not require any modification to the kernel. Because they do not 
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require modification to an application, they can be used to dynamically wrap 
processes that are started from other processes that have already been wrapped. 
Because they can be easily configured, the policy that they enforce can be 
dynamically modified as needed. By limiting the amount of damage malicious 
software can do, kernel hypervisors provide an approach to protecting one's system 
against current and future threats that may still be unknown. 
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3.      Performance Test Summary 
Since kernel hypervisors perform additional processing on system calls that are 
being monitored, the testing goal was to measure how this additional processing 
affects the overall performance of the system and the performance of the particular 
applications that are being monitored. Performance testing was performed on two 
kernel hypervisors: the Netscape hypervisor and the replication hypervisor. This 
section summarizes the tests performed and the results of the testing. More detailed 
information can be found in the Test Report [7]. 

3.1 Netscape Kernel Hypervisor Tests 
Since each process that is spawned by the Netscape browser is also monitored by the 
Netscape hypervisor, we used a shell process that could be spawned from within 
Netscape to run our tests. Each test consists of a C program that was run from within 
the shell. Times were measured for the following three situations: 

1. The Netscape hypervisor is not running and the tests are run from within a 
shell. This case determines the baseline times that the other tests can be 
compared against. 

2. The Netscape hypervisor is running and the shell is spawned from within 
Netscape. In this case we are measuring the full performance impact of the 
hypervisor since all monitored system calls made from within the shell will 
be checked. 

3. The Netscape hypervisor is running and the shell is spawned from outside 
Netscape. In this case the Netscape hypervisor checks to determine if the 
process has been spawned by Netscape. When it determines that it was not, 
it does no further checking. In effect, this case measures the overhead that 
running the hypervisor has on the rest of the system. 

3.2 Replication Kernel Hypervisor Tests 
The replication task increases the processing on the monitored system calls: the path 
names and file descriptors are checked and saved, the writing buffers are duplicated, 
and communication messages are created and delivered. 

The test results are affected largely by the length of file paths, the number of 
monitored file paths, the position of a file path in the check list, and the number of 
processes running on the system. 

The tests repeatedly measured individual system calls and generated average time for 
executing the system calls. Times were measured for the following three situations: 

1. The system calls access files when neither the replication hypervisor nor the 
replication daemon are running. This case determines the baseline times 
that the other tests can be compared against. 

2. Both the replication hypervisor and the replication daemon are running, and 
the system calls access files that are being replicated. This case measures 
the full performance impact on system calls when the replication hypervisor 
performs all of the processing needed to replicate a file. 
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3. Both the replication hypervisor and the replication daemon are running, and 
the system calls access files that are not being replicated. This case 
measures the performance impact of merely checking whether a file is being 
replicated or not, but not doing any of the additional replication processing. 
In effect, this case measures the overhead that running the hypervisor has on 
the rest of the system. 

3.3 Test Results 
The performance testing for both hypervisors looked at two areas: 

1. How did the hypervisor affect the performance when the hypervisor 
processing was not triggered by the system call? That is, how were the 
parts of the system that were not being controlled by the hypervisor 
affected. 

In this case the only additional processing was that performed by the 
hypervisor to determine whether it should invoke its special processing. 
For both the Netscape hypervisor and the replication hypervisor, this 
overhead was minimal, ranging from no measured overhead to a maximum 
overhead of 18 microseconds. This shows that hypervisors do not have an 
overly adverse performance impact on the rest of the system. 

2. How did the hypervisor affect the performance of system calls, and hence 
applications, that were actually being controlled by the hypervisor? 

In this case there was a noticeable increase in the system call time. The 
increases ranged from 38-58 microseconds for the Netscape hypervisor 
and from 17-196 microseconds for the replication hypervisor. In many 
cases, the times for a system call being replicated by the replication 
hypervisor were close to twice the time of an unreplicated call. This was 
to be expected, since, as part of the replication, the hypervisor needed to 
make a copy of all incoming system call parameters. 

It should be noted, that although there were measurable differences in system call 
response time when the hypervisors were running as opposed to when they were not, 
these differences were only of the magnitude of 100 microseconds or less and only 
for the system calls made by applications actually being monitored. In most cases, 
these differences will not be noticeable, and, at any rate, are certainly within the 
tolerable range, especially considering the functionality that the hypervisors provide. 
For example, we have not noticed any performance penalty from running the 
Netscape browser hypervisor. 
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4. Composition Analysis Summary 
This section contains a short summary of the composition analysis that was done on 
the program. The full set of specifications and documentation of the composition 
analysis is in the Formal Specifications report [8]. 

Just as a software developer can build a complex system from a set of software 
modules, composition allows a systems analyst to build specifications for, and reason 
about, a complex system from the specifications of its components. While this 
suggests a "bottom up" approach to system specification, the "top down" approach, 
referred to as refinement, proves to be as useful if not more so. However, whether the 
analyst applies composition from the top down or from the bottom up, the analyst is 
able to reduce arguments about the properties of an entire, and possibly complex, 
system to a set of simpler properties and relatively simple arguments about each of 
the components. 

In particular, the application of composition to the analysis of a system provides 
similar benefits as the modular approach to writing code. Even if the design (and 
specification) of one component changes, as long as the properties and interfaces 
between that component and the others remain stable, then only the arguments made 
about the properties ofthat one component need to be re-verified. In other words, the 
assurance arguments for unchanged components become reusable. 

4.1 Specified Systems 
The composition framework that was used is the one developed on the Composability 
for Secure Systems program which is the successor to the framework developed 
under the DTOS program. This framework is based on the work of Abadi and 
Lamport[9] and of Shankar[10]. The differences between the Composability and 
DTOS approaches and that of Abadi and Lamport are described in more detail in the 
Composability for Secure Systems Refined Design Report [11] and in the DTOS 
Composability Report[12] respectively. For both the Composability for Secure 

* Systems program and the DTOS program, the framework has been specified in the 
PVS language. 

The composability framework is based on a state transition model. Each transition is 
a triple of the form (initial state, final state, transition agent). Depending on the 
needs of the analysis, the state may represent either the component state or the 
system state. The transition agent can represent a variety of concepts, including 
particular components, particular operations that a component supports, or threads 
that implement a component. Transition agents also can represent agents in the 
component's environment that are not part of the component. 

Four separate, but related, systems were specified. The four specifications are related 
via refinement. The second and third specifications are refinements of the first; the 
fourth is a refinement of the second. The systems are: 

• no hypervisor loaded into the kernel; that is, just one component: the kernel. 
Since this system has just a single component, composability has nothing to 
add to the analysis of it. However, the kernel without any hypervisors loaded 
into it forms the baseline system from which all of the other systems are 
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built. 

• a two component system consisting of the kernel and a single security 
hypervisor that monitors write requests loaded into the kernel 

• an enhanced two component system consisting of the kernel and a single 
security hypervisor that monitors write requests and return parameters 

• a multiple component system consisting of the kernel, a master hypervisor 
and a set of security hypervisors that monitor write requests. In this 
specification, the single kernel hypervisor has been refined into a master 
hypervisor and a set of hypervisors each of which have a security policy 
defined. It is possible to implement a single hypervisor that would behave 
identically to a system composed of the components specified in this case, 
but the added complexity of specifying the security policy would make the 
task very complex. 

In this model, all of the hypervisors are monitoring the same system call: a 
write request. The master hypervisor calls all hypervisors monitoring the 
given process before forwarding the write request to the kernel. In practice, 
the master hypervisor maintains a list of hypervisors monitoring a given 
system call. It calls each of the hypervisors monitoring that call, and each 
hypervisor in turn determines whether it monitors the given process. 

Each specification describes the individual components of the system and the 
common state for the composite system. A list of properties satisfied by each 
component was derived, and composability theory was used to show that these 
properties are satisfied by the composite system. 

4.2 Conclusions 
Since composability theory says that the properties of a system are just the 
conjunction of the component properties, the analysis seems to be trivial. In fact, the 
hypotheses placed on a set of components for composability are so weak, that the 
composition theorem seems to say almost nothing. However, the final results are not 
as trivial as they appear at first glance, and this is often the case with any 
mathematical construct which is defined well. The strength of composition comes not 
from the composition theorem per se, but from the way in which composition of two 
components is defined. 

The interesting features of a specification come in the decision of what should be 
specified in each component's transitions, and what other transitions each component 
can tolerate. In fact, much of the strength of the properties relies on what things one 
can reasonably enforce on the environment of a component. The more that one can 
enforce on the environment of a component, the more strongly one can state (and 
perhaps more easily one can prove) the properties of the component. However, the 
counter argument is that specifying too much in the environments of the system 
components can specify away all functionality of the composite system (since the 
composite consists of only those individual component transactions that satisfy each 
of the other component's environment transaction specifications). The goal therefore 
is to specify in each component's environment only those things that are needed to 
prove the component's properties hold. 
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The first specification represents an operating system that is not protected by a kernel 
hypervisor. The final three specifications represent refinements of a sort on that 
initial specification. They are not true refinements in the sense that the hypervisors 
are enforcing a security policy in addition to the one already enforced by the kernel. 
However, this appears to be the most powerful application of composition. While the 
code for the kernel itself may be unavailable to the developers of the hypervisors, the 
hypervisors are kernel-loadable modules, and thus represent a refinement of the 
kernel. Since the code for the kernel may be off limits, the interfaces and properties 
of the kernel are both well-defined and stable. 

This is an ideal situation for the re-use of the specification of the kernel properties. 
We know what they are to begin with. After loading the hypervisors into the kernel, 
the properties of composite system are just the conjunction of the properties of the 
hypervisors and the kernel. That means that we can layer the desired behavior of the 
hypervisors over the properties of the kernel with the assurance that these properties 
will also hold. 
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5. Lessons Learned and Future Directions 
This section contains a summary of lessons learned, open issues and possible future 
directions that the work described in this report could take. 

5.1 Lessons Learned 
An original goal of the program was to investigate whether kernel loadable modules 
could be used to add additional security and robustness to systems with minimal 
impact on the system and system applications. The results of the program clearly 
demonstrate that this is not only possible, but, in fact, has many advantages over 
other approaches for wrapping system components. These advantages include: 

• No modifications are required to kernel code. 
• No modifications are required to application code and monitored 

applications do not need to be recompiled or relinked. 
• The wrapper code runs within the kernel and, hence, is much harder to 

bypass. 

• Application policies can be easily changed or updated in a dynamic manner. 
• Wrappers can be easily stacked to enforce more complex policies that 

consist of a number of simpler policies. 

• The approach can be used on any system that supports kernel loadable 
modules. 

• The approach can be used to implement a wide variety of security, integrity 
and redundancy features. Since access to specific system calls can be 
monitored, additional controls on what system calls a user can execute can 
be added. 

One of the more interesting results of our work is the validation of the concept of a 
master kernel hypervisor to control the specific client hypervisors and to provide 
communication between user space and specific hypervisors for management. An 
alternative approach would be to construct one large loadable module mat contained 
all of the functionality of both the master kernel hypervisor and the specific client 
hypervisors. This large module approach would be much less flexible, manageable 
and maintainable. Hence, proving that the more modular approach used on the 
program actually worked is a significant accomplishment. 

Another interesting result is the development of a generic kernel hypervisor that can 
be used to provide an isolated environment within which an application can execute. 
As demonstrated with both the Netscape hypervisor and the Apache Web server 
hypervisor, the generic hypervisor is easy to configure for applications with minimal 
work. By running the hypervisor in audit mode, the files that the application 
normally accesses can be identified and the appropriate configuration file constructed 
that allows only the accesses needed by the application. 

The hyper_cop hypervisor provides the other most common type of additional access 
control needed: controlling the accesses to particular files for all applications and 
users on the system. The combination of the generic hypervisor with the hyper_cop 
hypervisor provides most of the additional access control that   might be desired. 
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There are still some open issues, however, involving the hyper_cop hypervisor. 
These are discussed in the next section. 

5.2 Open Issues 
While the feasibility and usability of kernel hypervisors was shown on the program, 
there are a number of issues that arose that remain open and will require additional 
research to resolve. The most interesting areas that were not fully addressed on the 
program due to limitations on time and funding include: 

• Network and process control. 
While the kernel hypervisor framework is appropriate for controlling 
access to files, network resources and processes, only file access control 
was investigated on this program. It remains an open issue as to how well 
the approach will work for controlling communications between processes 
and for controlling access at the network level (for example, to limit 
access to specific IP addresses or to perform additional processing as part 
of a network request). 

• Platform independence. 
While the kernel hypervisor approach should work for any system that 
supports kernel loadable modules, it has only been tested on the Linux 
operating system. For other Unix systems, like Solaris, that support kernel 
loadable modules, it should be a relatively straight forward task to port the 
current framework. For a system like Windows NT, that is proprietary 
with little kernel documentation, it remains an open issue as to how well 
the approach will work. There are unofficial ways to insert code to 
intercept system calls on NT that have been documented [13]. However, 
whether these methods are sufficient to support the hypervisor framework 
is unknown. 

• Handling relative path names. 
The current hyper_cop prototype is sufficient to show proof of concept but 
is weak on protection. Hyper_cop is configured by reading in and storing 
a list of filenames to protect, which it checks each time an open() call is 
encountered. The filename being opened is checked against the list and 
access decision are made. Unfortunately, relying on filename string 
comparisons is a very inaccurate way to identify files. To circumvent the 
protection, a user simply needs to access the file by a different name than 
the name being protected by hyper_cop. This can be accomplished by 
many methods including accessing the file through a symbolic link, 
through the /proc directory structure or simply by giving a relative path 
and name instead of the full name of the file. How difficult it is to 
identify and control all such indirect accesses to a file is an open issue. 

5.3 Future Directions 

The kernel hypervisor concept is extremely flexible and has a variety of possible 
applications. This implies that there are a number of possible directions for future 
research and development in this area. These include: 
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• 

Extending the approach to other platforms. 
The first step in doing this is to adapt the technology, which currently runs 
only on the Linux operating system, to other popular operating systems, in 
particular   Sun Solaris and Windows NT. 
The Solaris operating system supports a flexible, kernel loadable module 
functionality  that  is  more than  sufficient  to  implement the  kernel 
hypervisor framework. In fact, it has operating system features similar to, 
and in some cases more sophisticated than, those provided by Linux and 
used on the Kernel Hypervisor program. 
While the Kernel Loadable Wrapper architecture for NT would be the 
same as for Linux and Solaris, because of the differences in the operating 
systems, the NT development would be more difficult. The primary 
difficulty arises from the fact that Windows NT is a closed, proprietary 
system and Microsoft does not release documentation of some of the 
kernel details that would be needed. 

Enhancing the capabilities of the hyper_cop hypervisor. 
Stronger protection would be accomplished by developing a shell that 
works   with   hyper_cop   to   provide   user   authentication.      Such   a 
hypervisor/shell combination would assure only the desired individuals 
would have access to the protected files regardless of root access or using 
trial and error to identify the privileged user. 
More work needs to be done to ensure that the hypervisor can correctly 
identify file references that are made via either relative pathnames or 
alternate paths. 

Developing additional types of hypervisors. 
The current set of hypervisors are all focused on file access, audit and 
replication. Other areas where hypervisors could be useful and should be 
developed include interprocess communication and network access and 
audit. 

Extending the composition analysis. 
The composition framework developed under the DTOS and 
Composability For Secure Systems programs was specified in PVS, which 
provides an interactive environment for writing specifications and machine 
checking formal proofs. Ideally, the specifications done on this program 
would have also been specified in PVS, and the properties stated for each 
component could have been proved by the theorem checking capability of 
PVS. However, time and budget constraints of this program led us to 
choose not to specify the components in PVS. As the specifications 
become more complex the additional effort to write specifications in PVS 
pays off in higher confidence in their correctness, and minor changes to 
the specifications allow the analysts to re-run machine proofs according to 
existing strategies rather than having to re-prove a theorem by hand. 

Protecting additional applications. 
There are a number of additional areas where specific client kernel 
hypervisors could be prototyped. These areas include: 
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• protecting security critical databases and servers 

• ensuring that CORBA security controls are not bypassed 

• enhancing audit capabilities dynamically 

• providing dynamic file redo logs to support recoverability. 

5.4 Conclusion 
The kernel hypervisor program has successfully demonstrated the feasibility and 
usefulness of using kernel loadable modules to add additional security and robustness 
to an application without needing to modify either the application or the operating 
system on which the application runs. Future research should now focus on 
extending the framework developed on this program to other platforms and on 
developing new and enhanced client kernel hypervisors to provide security, 
reliability and recovery features not currently available. 
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7.1    Overview 
This document is the User Guide for the set of kernel hypervisors developed by 
Secure Computing Corporation to add security and robustness to the Linux operating 
system and certain COTS applications. A hypervisor is a layer of software, normally 
operating directly on a hardware platform, that implements the same instruction set 
as that hardware. They have traditionally been used to implement virtual machines. 

Kernel hypervisors are a similar concept, but are implemented on top of an operating 
system kernel rather than on top of the hardware. These kernel hypervisors provide a 
set of "virtual" system calls for selected system components by intercepting system 
calls to perform pre-call and post-call processing. They can be used to make a 
component more robust or to perform various security functions, such as application 
specific fine-grained access control or auditing of kernel events. 

Kernel hypervisors have a number of potential applications, including protecting user 
systems from malicious active content downloaded via a Web browser and wrapping 
servers and firewall services to limit possible compromises. To illustrate the 
possibilities, five hypervisors have been created for the Linux operating system; 
hyper_boss, hyper_ns, hyper_apache, hyper_cop and hyperjreplicate. 

Hyper_boss is the master hypervisor responsible for trapping system calls and re- 
directing them to its registered client hypervisors. Hyper_boss also serves as the 
device driver for /dev/hypers which allows communication between user space and 
kernel space. 

Hyper_ns is a wrapper for the Netscape web browser. Hyper_ns restricts Netscape 
and any processes spawned by Netscape to a defined domain. This protects the 
user's system from attacks by downloaded active content. Any damage is restricted 
to the files and accesses listed in the hyper_ns domain. 

Hyper_apache is a wrapper for the apache web server. Installing hyperjtpache will 
restrict the file access of the apache web server to the defined domain and contain 
any attacks through the web server. In addition, by restricting the files which make 
up the content of the web site to Read Only, hyper_apache will protect the web 
content from modification by the server process or any process spawned by the server 
process. This may prevent attacks attempting to change the content of your web site. 

Hyper_cop defines a circle of protection for one or more users. The files listed in a 
user's circle are restricted from the rest of the world so that only the circle owner is 
allowed the accesses defined for the circle files. 

Hyper_replicate will replicate a defined file set to a second location. Once 
configured, the files to be replicated (target files) are copied to the destination. Then 
changes to the target files are tracked and duplicated in the destination set. 

7.2   Installation Instructions and Brief Usage Notes. 
a. Log in as root. 
b. Make sure Linux is installed with loadable kernel modules enabled. 

The Linux manual includes detailed instructions on configuring and installing 
a new kernel. If needed, follow the instructions for using "make config", "make 
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menuconfig" or "make xconfig" to configure a new kernel. 
For a quick check if kernel modules are enabled, run the command "/sbin/lsmod" 
If modules are listed, you have kernel modules and should not have to reconfigure 
the kernel. If no modules are listed, you may have to re-configure. 

c. Copy the hypervisor tar file to the /home directory and expand. 
cp /mnt/floppy/hypers.gz /home 
tar -cvzf hypers.gz 

d. Create the hypervisor device to enable communication between kernel and user space. 
mknod -m 666  /dev/hyper c  42  0 

e. Copy default configuration files to /etc/hypervisor 
cp /home/hypervisor/configs /etc/hypervisor 

e. Change to the directory containing the compiled modules and configuration programs. 
cd /home/hypervisor/bin 

f. Install the master hypervisor. 
insmod hyper_boss 

g. Install desired client hypervisors. They will register themselves with the master 
hypervisor and be assigned a client number. 

insmod hyper_ns 
insmod hyper_apache 
insmod hyper_cop 
insmod hyper_replicate 

h. Use vi, emacs, or your personal editor of choice to edit the configuration files. The 
default files include instructions and examples to help create configurations appropriate 
for your desired effect. 
i. Use one of the client configuration applications to find out which client id was assigned 
to each hypervisor. 

nsctl 0 
copctl 0 
repctl  0 

Any one of these commands will cause the master hypervisor to print out configuration 
information including the assigned client ids. For example: 

id = 1   name = hyper_netscape 
desc = hypervisor for netscape 
steal syscalls -        2 5   8   ... 

id = 2   name = hyper_wrapper 
desc = generic application wrapper hypervisor 
steal syscalls =   ... 

id = 3   name = hyper_cop 
•  •  » €LC» • * 

j. Configure client hypervisors. 
nsctl  1  1 
nsctl  2  1  /etc/hypervisor/apache.conf 
copctl 3  1 
repctl  4  1 

More detailed description on configuration of the client hypervisors can be found in the 
following sections. The highlights are: 
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1. nsctl is used for hyper_ns and hyper_apache but it assumes hyper_ns for default 
configuration. When nsctl is used for hyper_apache, the configuration file must be 
specified. 

2. copctl is used for hyper_cop 
3. repctl is used for hyperjeplicate 
4. the first parameter is the client id as reported by hyper_boss 
5. usage information is listed when the control command is issued without any 

parameters. This also indicates the default configuration file. 

7.3   Linux Commands 
Three Linux commands are used to manage the hypervisors: 

/sbin/insmod  "module name" — install kernel module 
/sbin/rmmod   "module name" — remove kernel module 
/sbin/lsmod — list modules 

These commands must be executed by the super user. 

Always install the master hypervisor "hyper_boss" before any of the client hypervisors. 
Trying to install a client hypervisor without hyper_boss present will result in error 
messages from the hyperjregister, hyper_unregister and hyper_steal_syscall functions 
reporting 

wrong version or undefined 

Always remove all client hypervisors before removing the master hypervisor. Trying to 
remove hyper_boss while another hypervisor is present will result in the error message 

Device  or resource busy 
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7.4 hyperjioss 

7.4.1 Description 

A framework has been developed based on a master kernel hypervisor, hyper_boss, 
whose job is to coordinate installation and removal of individual client kernel 
hypervisors and to provide a means for management of these clients. The framework 
allows client kernel hypervisors to be stacked so that a variety of application specific 
or task specific policies can be implemented, each by means of its own kernel 
hypervisor. The hypervisors run in the kernel, but since they are loadable modules 
they do not require that the kernel be modified. 

The master hypervisor is loaded before any other client kernel hypervisors. A special 
application programming interface (API) has been defined that allows client 
hypervisors to register and unregister themselves with the master hypervisor and to 
identify which system calls they need to monitor. The master hypervisor keeps track 
of all currently registered client hypervisors and of the particular system calls that 
each client hypervisor is monitoring. When a client hypervisor module is removed 
via the rmmod call, it is the responsibility of the client hypervisor to de-register itself 
with the master hypervisor. 

A special device, /dev/hyper, has been defined for communication between user 
space and kernel hypervisors. The master hypervisor acts as the device driver for this 
device. The device allows a privileged user to dynamically update the configuration 
information for a kernel hypervisor, including updating the security policy that the 
hypervisor enforces. It also provides a mechanism that kernel hypervisors can use to 
communicate with user space daemons. Such daemons, for example, could be used to 
provide additional audit capabilities or replication services. 

The master hypervisor provides special wrapper code for use with any system call 
that is being monitored. The actual monitoring of system calls is performed by 
redirecting the links in the kernel system call table to point to system call wrappers 
that the master hypervisor provides. This redirection of links is the only modification 
to the kernel that is performed and is done by the master hypervisor only on system 
calls being monitored. The wrapper code is invoked when the system call is made 
and performs the processing illustrated in Figure 1. 

Each system call has its own wrapper that follows the algorithm: 

• For each client kernel hypervisor monitoring this call, initiate that client's 
pre-call processing. 

• Call the standard system call processing. 

• For each client kernel hypervisor monitoring this call, initiate that client's 
post-call processing. 
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Figure 1. System Call Processing 
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Pre-call and post-call processing is used to enforce the client hypervisor's particular 
security policy or to initiate other actions by the client hypervisor. This processing 
could include additional auditing of system calls, including call parameters and 
results; performing access checks and making access decisions for controlled 
resources that the hypervisor is protecting; modifying system call parameters; and 
passing information to user daemons. 

7.4.2 Usage 
The following commands should be run from /home/hypervisor/bin. 

/sbin/insmod hyper_boss       to load hyper_boss 
/sbin/rmmod hyper_boss       to unload hyper_boss 
/sbin/lsmod to list modules loaded 

Hyper_boss needs to be loaded before any of the other client hypervisors. 
Hyper_boss can not be unloaded until after all client hypervisors have been unloaded. 

Any of the hypervisor control applications (nsctl, copctl, repctl) with first parameter 0 
(zero) can be used to get a report from hyper_boss of the registered client hypervisors, 
their client id, name, description and re-mapped system calls. For example, run: 

/home/hypervisor/bin/nsctl 0 

to get the client hypervisor report. 
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Messages are logged to the stdout terminal and to the file: 
/var/log/messages 

7.4.3 Configuration 

The hypervisor device, /dev/hyper, must exist before nsctl, copctl or repctl can 
communicate to hyper_boss. This device is created by root running the command: 

mknod -m 666 /dev/hyper c  42  0 

7.4.4 Known Bugs/Limitations 
None. 

7.5 hyper_ns 

7.5.1 Description 

The goal of the Netscape hypervisor is to protect a user, browsing on the Internet, 
from downloading and executing malicious active content that might damage the 
user s system. The Netscape hypervisor accomplishes this by monitoring system calls 
made by the browser and enforcing a policy that only allows certain resources to be 
accessed. In particular, the set of files that the browser can open for read and 
read/write access is controlled so that the browser effectively operates within its own 
limited execution context. While this does not prevent malicious code from accessing 
and possibly damaging resources within this context, it does limit the damage that 
could be done to only these resources. 

In the case of the Netscape browser, the context includes the user's .netscape 
directory as well as limited access to other libraries needed by the browser to 
execute. Most files on the system, however, are not accessible to the browser and so 
cannot be damaged. To ensure that applications started from the browser as the result 
of a download, e.g. a postscript viewer, are also controlled, the hypervisor keeps 
track of all descendants of the browser and enforces the same policy on them as on 
the browser. 

The security policy that the Netscape hypervisor enforces is stated as a set of rules 
identifying which resources the browser is allowed to access and what permissions 
the browser has to the resource. If there is no rule that allows access to a resource 
then the hypervisor refuses any requests for access to that resource. The format of the 
rules is: 

<type>        <identifier>     <permissions> 

where <type> is either a file, socket, or process 

<identifier> is either a file/dir pathname, an IP address, or a process ID 

and  <permissions> depends on the type. 

For our Netscape prototype, only rules for the <file> type are used. For these rules 
permissions are: 
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read, write, read/write, and none. 

Certain conventions are used to simplify the statement of the rules. If an <identifier> 
is a file directory, then access to all files in that directory and all subdirectories is 
governed by the rule for the <identiflef>, unless this rule is specifically overridden. 
Rules can be overridden by stating another, more specific, rule. For example, if a rule 
allows read access to all files and subdirectories of the directory /etc, then you can 
prevent users from accessing the file /etc/passwd by including a rule for this file with 
a permission of none. 

7.5.2 Usage 
The following commands should be run from /home/hypervisor/bin. 

/sbin/insmod hyper_ns to load hyper_ns 
/sbin/rmmod hyper_ns to unload hyper_ns 
/sbin/lsmod to list modules loaded 

Hyper_boss needs to be loaded before hyper_ns. 

Use the hypervisor client control application, nsctl, to control and configure hyper_ns. 
nsctl is located in /home/hypervisor/bin. Use: 

nsctl to get a usage report showing how to use nsctl 
nsctl 0 to have hyper_boss list configured client hypervisors 
nsctl [id] 0 to print hyper_ns configuration 

where [id] is the client id for hyper_ns as reported by hyper_boss in the 
configured client hypervisors report, 

nsctl [id] 1 to configure hyper_ns from the default configuration file 
The default configuration file for nsctl is /etc/hypervisor/ns_acl.conf. 

nsctl [id] 4 to clear all configuration 
nsctl [id] 5 [log level] to set the log level. 

Messages are logged to the stdout terminal and to the file: 
/var/log/messages 

7.5.3 Configuration 
The configuration file, /etc/hypervisor/ns_acl.conf, is used with the command 

nsctl [id] 1 
to configure hyper_ns. 

An example configuration file, 
/home/hypervisor/configs/ns_acl.conf 

is included with the distribution. This file's @general access control list shows the 
minimum accesses needed by netscape for the web browser to run correctly. The @target 
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entry may need to be changed from /usr/local/bin/netscape to the correct path to the 
netscape application. 

7.5.4 Known Bugs/Limitations 
None. 

7.6 hyper_apache 

7.6.1 Description 

Both hyper_ns and hyper_apache perform the same generic function; they wrap a 
specified application and restrict its access to a pre-defined domain. This concept 
can be applied to any application. In fact, changing the @target entry of the 
configuration file will allow either of our wrappers to watch over any application 
desired. 

It may have been desirable to create one generic hypervisor, let's call it 
hyper_wrapper, which could be configured for whatever application needs to be 
wrapped. Then one could load hyper_wrapper as many times as needed to wrap all 
the desired applications. Unfortunately, the Linux system call insmod will not 
install a module more than once. So we are forced to have different names for the 
wrappers which handle Netscape and Apache. 

Because of the insmod imposed limitation, and since we are specifically 
demonstrating wrappers for just the Netscape and Apache applications, hyper_apache 
was created to provide a second uniquely named hypervisor instead of creating a 
generic wrapper hypervisor. 

The Apache Hypervisor, hyper_apache, started as an exact copy of hyper_ns. The 
only changes were to remove "netscape", "hyper_ns" and "ns" from all error 
messages and logging messages. These were changed to generic "wrapper" messages. 
Note that only messages were changed in making hyper_apache from hyper_ns. All 
the data structures, major components and minor functions are exactly the same. 

Since hyper_apache is essentially hyper_ns with generic messages, one could easily 
create more wrapper hypervisors by the following steps. 

• Copy hyper_apache.o to a new module name. For example, if the new 
hypervisor is to wrap the ftp server, it could be called something clever like 
hyper_ftp.o 

• Create an appropriate configuration file with the desired target /usr/bin/ftp. 
• Load and configure the new hypervisor just like hyper_ns or hyper_apache. 

The only negative to having multiple hypervisors based on hyper_apache is that error 
messages and logging messages will not be unique. 

7.6.2 Usage 

The following commands should be run from /home/hypervisor/bin. 

/sbin/insmod hyper_apache   to load 
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/sbin/rmmod hyper_apache   to unload 
/sbin/lsmod to list modules loaded 

Hyper_boss needs to be loaded before hyper_apache. 

Since hyper_apache is just a more generic copy of hyper_ns, the same client control 
application, nsctl is used to control and configure hyper_apache or any other generic 
wrapper created from renaming hyper_apache. One just needs to make sure the correct 
configuration file is specified. 

nsctl is located in /home/hypervisor/bin. Use: 

nsctl to get a usage report showing how to use nsctl 
nsctl 0 to have hyper_boss list configured client hypervisors 

hyper_apache and any other generic application wrapper hypervisor created by 
copying hyper_apache will be listed as "hyper_wrapper" by hyper_boss. If more 
than one wrapper is loaded, it is important to note the order they were loaded to 
match the client id with the desired hypervisor. 

nsctl [id] 0 to print client hypervisor configuration. 
where [id] is the client id for the wrapper hypervisor as reported by hyper_boss in 
the configured client hypervisors report. 

nsctl [id] 1 /etc/hypervisor/apache.conf       to configure from the specified file, 
the default configuration file for nsctl is /etc/hypervisor/ns_acl.conf so it is 
important to specify the configuration file for hyper_apache and any other 
generic wrapper hypervisors. 

nsctl [id] 4 to clear all configuration 
nsctl [id] 5 [log level] to set the log level. 

• Messages are logged to the stdout terminal and to the file: 
/var/log/messages 

7.6.3 Configuration 
The configuration file, /etc/hypervisor/apache.conf, is used with the command 

nsctl [id] 1 /etc/hypervisor/apache.conf 

to configure hyper_apache. 

An example configuration file, 
/home/hypervisor/configs/apache.conf 

is included with the distribution. This file's @general access control list shows the 
minimum accesses needed by apache for the web server to run correctly. The @target 
entry may need to be changed from /usr/sbin/httpd if your system has httpd in a different 
location. 
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7.6.4 Known Bugs/Limitations 

hyper_apache must be running before the apache server daemon, httpd is started. Since 
httpd is normally started up by the script S85httpd in /etc/rc.d/rc3.d before login is 
enabled, the user has three options. 
• One, create a script, say S84hypers, to install hyper_boss and hyper_apache before 

S85httpd is started. 
• Two, stop httpd with the command /etc/rc.d/rc3.d/S85httpd stop, start the hypervisors, 

then restart httpd with /etc/rc.d/rc3.d/S85httpd start. 
• Three, remove S85httpd from the normal startup and run it manually after 

hyper_apache is installed. 

In any case, for hyper_apache to trap the httpd process, you must make sure it is started 
before the first httpd is installed. 

7.7 hyper_cop 

7.7.1 Description 

The Circle of Protection hypervisor, or hyper_cop, is a loadable kernel module and a 
client of the master hypervisor. The goal of hyper_cop is to restrict access to files 
which are listed as belonging to a specific user's Circle of Protection. 

Much like hyper_ns, hyper_cop reads in an access control list which specifies files 
and accesses. However, with hyper_cop, there is no general access control list or a 
target application. There is no target application because hyper_cop does not protect 
files against access by a particular process but it controls all access to its protected 
files regardless of who or what application is requesting the access. There is no 
general access control list because adding a file to a circle is telling hyper_cop that 
the defined access is reserved for a specified user, so a user must be supplied. In 
fact, each listed file must belong to one and only one user's circle of protection. 

The access associated with a file in a user's circle is interpreted as the access 
reserved for the circle owner. For example, an access of W (for write) specifies the 
owner of the circle reserves Write access to the file. All other users are allowed to 
Read but not Write. Reserving RW removes all Read and Write from general users 
and only the circle's owner is allowed any access. 

In this way, a set of files can be restricted from general access while still being 
allowed access to a specified privileged user. This is more protective than the 
standard UNIX file control since even "root" will not be allowed access to protected 
files. To further protect the files from the super user, hyper_cop also watches for the 
Set User Id, (setuid) command and does not allow switching to a user who has a 
circle of protection configured. So even with root access, the super user will have to 
logout, log back in as the circle's owner and provide the correct password before 
access to the files is allowed. Eliminating setuid for circle owners forces users to 
authenticate themselves before being able to access circle files. 

Note: A malicious user with root access could still change the password for a circle 
owner, then log in with the new password to gain access. To prevent this, a special user 
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could add /etc/passwd to their circle with Write access reserved. Then root would no 
longer be able to change passwords. 

7.7.2 Usage 
The following commands should be run from /home/hypervisor/bin. 

/sbin/insmod hyper_cop        to load 
/sbin/rmmod hyper_cop        to unload 
/sbin/lsmod to list modules loaded 

Hyper_boss needs to be loaded before hyper_cop. 

copctl is located in /home/hypervisor/bin. Use: 

copctl to get a usage report showing how to use copctl 
copctl 0 to have hyper_boss list configured client hypervisors 
copctl [id] 0 to print circle of protection hypervisor configuration. 

where [id] is the client id for the hyper_cop as reported by hyper_boss in the 
configured client hypervisors report, 

copctl [id] 1 to configure hyper_cop from the default config file. 
The default configuration file for copctl is /etc/hypervisor/cop_acl.conf. 

copctl [id] 4 to clear all configuration 
copctl [id] 5 [log level] to set the log level. 

Messages are logged to the stdout terminal and to the file: 
/var/log/messages 

7.7.3 Configuration 
The configuration file, /etc/hypervisor/cop_acl.conf, is used with the command 

copctl [id] 1 
to configure hyper_cop. 

An example configuration file, 
/home/hypervisor/configs/cop_acl.conf 

is included with the distribution. This file shows how hyper_cop may be used to control 
access to the apache web server content All users are still allowed Read access to the 
web content files but only a special user (the web master) is allowed to Write the files. 
You must change the @user name to an appropriate user or create a new user to match 
the one listed in copjacl.conf. 

Protecting the web content is just one of may uses for hyper_cop. Any set of files can be 
configured as belonging to a specified user's circle of protection. These files will then be 
protected from access by all other users even the super user. 
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Multiple circles can be configured for multiple users. Just remember to include a file in 
at most one user's circle for proper processing. 

7.7.4 Known Bugs/Limitations 
a. This implementation of hyper_cop is sufficient to show proof of concept but it is a bit 
weak on protection. Hyper_cop is configured by reading in and storing a list of filenames 
to protect, which it checks each time an open() call is encountered. The filename being 
opened is checked against the list and an access decision is made. Unfortunately, relying 
on filename string comparisons is a very inaccurate way to identify files. To circumvent 
the protection, a user simply needs to access the file by a different name than the name 
being protected by hyper_cop. This can be accomplished by many methods including 
accessing the file through a symbolic link, through the /proc directory structure or simply 
by giving a relative path and name instead of the full name of the file. For example, 
while /home/httpd/index.html may be known to hyper_cop as a file to protect, open() 
calls on /home/httpd/linktoindex.html, /proc/144/cwd/index.html, or 7index.html can not 
immediately be identified as the file to protect. 

b. A file can exist in at most one user's circle. This is a rule assumed by the access logic 
of hyper_cop but is not enforced during configuration. If a file is listed in more that one 
user's circle, access control will not be properly enforced. 

c. Files within a protected directory can still be deleted with "rm". 

7.8 hyper_replicate 

7.8.1 Description 
The replication hypervisor is used to transparently replicate a file or set of files. The 
objective is to provide a replication facility that allows immediate backup of changes 
to a file without having to modify any applications that are making the actual 
changes. 

The replication hypervisor monitors all system calls that modify files. It looks for 
calls that modify any of the files being replicated. When such a call is identified, the 
hypervisor caches the input parameters and allows the call to continue execution. If 
execution of the call completes successfully, then the hypervisor sends the cached 
input parameters to a replication daemon, operating in user space, that replays the 
call with the cached parameters on the copy of the file that it is maintaining. 

Files can be replicated via this method either locally or across the network (using NFS). 

7.8.2 Usage 
The following commands should be run from /home/hypervisor/bin. 

/sbin/insmod hyper_replicate to load 
/sbin/rmmod hyperjeplicate to unload 
/sbin/lsmod to list modules loaded 

37 



Hyper_boss needs to be loaded before hyperjeplicate. 

repctl is located in /home/hypervisor/bin. Use: 

repctl to get a usage report showing how to use repctl 
repctl 0 to have hyper_boss list configured client hypervisors 
repctl [id] 0 to print replication hypervisor configuration. 

where [id] is the client id for hyper_replicate as reported by hyper_boss in the 
configured client hypervisors report. Note that a copy of repctl needs to be 
running in active replication mode for this command to show anything but 
"empty" for the monitored files, 

repctl [id] 1 to configure hyperjeplicate from the default config file. 
start replication and install the replicate deamon to service 
messages for modification of the replicated files. 

The default configuration file for repctl is /etc/hypervisor/replicate.conf. 
repctl [id] 1 & to config and run the replicate deamon in the background. 

The default configuration file for repctl is /etc/hypervisor/replicate.conf. 
Note the process id when running in the background so you can kill it if desired, 

kill [pid] to remove the replication deamon if running in background, 
repctl [id] [debug level] to set the debug level 

Messages are logged to the stdout terminal and to the files: 
/var/log/messages 
/var/log/hypervisor/replicate 

Note: the directory /var/log/hypervisor needs to be created with writing allowed before 
repctl [id] 1 is run. 

7.8.3 Configuration 
The configuration file, /etc/hypervisor/replicate.conf, is used with the command 

repctl [id] 1 & 
to configure hyperjeplicate. 

An example configuration file, 
/home/hypervisor/configs/replicate.conf 

is included with the distribution. 

7.8.4 Known Bugs/Limitations 
a. As with hyper_cop, hyperjeplicate does not get the full pathname when a file is 
opened. Thus when a file is accessed by an application without using the full path, 
hyperjeplicate does not recognize the file as one to replicate and replication will fail. 
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b. Since hyper_boss opens /var/log/messages when loaded and since hyper_boss is loaded 
before hyperjeplicate, hyper_replicate will never trap the opening of/var/log/messages 
and will not replicate that file correctly. 

7.9 Important Files and Directories 
The following files and directories are used by the hypervisors for configuration files, log 
files, binary executables, source, etc. 

• dir:       /home/hypervisor 

Default home directory for the hypervisor source and executable files. 
• dir:       /home/hypervisor/bin 

Default location of the hypervisor modules and hypervisor client manager 
applications. The modules found here are: 
hyper_boss.o: master hypervisor 
hyper_ns.o: netscape hypervisor 

hyper_apache.o: generic hypervisor used to wrap the Apache server 
hyper_cop.o: Circle of Protection hypervisor. 
hyper_replicate.o: replication hypervisor. 
The client manager applications found here are: 

nsctl: to control hyper_ns and hyper_apache. 
copctl: to control hyper_cop. 
repctl: to control hyper_replicate. 

• dir:       /home/hypervisor/modules 

Default location of the hypervisor source code. Includes all source for all 
hypervisors and client manager applications. 

• dir:       /etc/hypervisor/ 

Default location of the configuration files. The user may specify a new file 
name and location while configuring a hypervisor, but each client manager 
application has a default file which is loaded unless specifically changed. 
The default files are: 

ns_acl.conf: Default configuration file for hyper_ns and nscü. 
apache.conf: Default configuration file for hyper_apache. Since 

nsctl is used to configure hyper_apache, and since 
the default file for nsctl is "ns_acl.conf', the user 

must specify /etc/hypervisor/apache_acl.conf when 
configuring hyper_apache. 

cop_acl.conf: Default configuration file for hyper_cop and copctl. 
replicate.conf: Default configuration file for hyper_replicate and 

repctl. 
• file:      /var/log/messages 
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Logging file for hyper_boss, hyper_ns, hyper_apache and hyper_cop. 
file:       /var/log/hypervisor/replicate 

Logging file for hyper_replicate and the repctl deamon. 

file:      /dev/hyper 
The device used for communication between user space and the kernel 
hypervisors. This device must exist to allow nsctl, copctl and repctl to talk 
to their hypervisors in kernel space. This device is created with the 
following command run by root: mknod -m 666 /dev/hyper c 42 
0 
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